HFAN-03.1.1: Digitally Programmable Low-Noise Avalanche Photo Detector (APD) Bias Circuit

A circuit is described to bias an avalanche photodiode as used in fiber-optic receivers. The simple boost converter with voltage-doubler output provides a digitally programmed output voltage of 25 V to 71 V from a 5 V supply. Ceramic filter capacitors and intentionally slowed MOSFET switching transitions provide a low noise output.

The avalanche photodiode detector (APD) is used as a receiver in optical communications, as is the pin diode. The APD is more sensitive, but it must be biased properly to produce the appropriate electron flow for a given flux of photons. Figure 1 shows the schematic of a low-noise APD bias power supply. This circuit is based on a MAX5026 low-noise, fixed frequency PWM boost converter operating in discontinuous inductor current mode.

The switching time of this device has been intentionally slowed down to reduce the high-frequency spikes present in other similar devices. The internal switching frequency of the MAX5026 is 500 kHz . The internal lateral DMOS switching device has an absolute maximum rating of 40 V , and along with the external voltage doubler network formed by C3, D2, D3 and C4, output voltages up to 71 V are possible.

Figure 1. Low-noise APD bias power supply. Varying the control input voltage from OV to 2.5 V results in output voltage change from 71 V to 24.7 V .

Operation of the doubler circuit at steady state is as follows: capacitor C 2 transfers charge to C 3 during the "ON time" when the LX pin is low (internal DMOS conducting), at the same the inductor L1 is charging up. When the internal DMOS switches off, then current that has built in the inductor forward biases both D1 and D3. Thus, the total voltage presented to capacitor C4 is the sum of VC2 and VC3.

The circuit of Figure 1 is able to provide more than 1 mA of output current at 71 V output with a 5 V input supply. Figure 2 shows the output load regulation at three output voltage settings. Figure 3 shows the output voltage adjustment range with respect to the controlling voltage at the control input. Figure 4 shows the efficiency curves for three output voltage settings.

Figure 2. Output voltage regulation vs. output current for three output voltage settings 25 V , 50 V and 71 V .

Figure 3. Measured output voltage vs. control input voltage

Figure 4. Efficiency curves

Figure 5 shows the output ripple at 71 V with a 1 mA load current at the output with $1 \mu \mathrm{~F}$ of ceramic bypass capacitor. The low-noise characteristics of this device are evident from this oscilloscope shot. Output ripple is less than 100 mV (see Figure 5).

Figure 5. Output voltage ripple. Vout=71V, Iout=1mA. With 1μ F output capacitor. Vertical: $50 \mathrm{mV} / \mathrm{div}$. Horizontal: $200 \mu \mathrm{~s} / \mathrm{div}$

This can be improved further by placing a low cost Nichicon $10 \mu \mathrm{~F}, 100 \mathrm{~V}$, VX series electrolytic capacitor in parallel with the $1 \mu \mathrm{~F}$ ceramic. This results in less than 20 mV ripple (see Figure 6).

Figure 6. Output voltage ripple. Vout=71V, Iout=1mA. With $10 \mu F$ electrolytic capacitor added in parallel to the $1 \mu F$ output capacitor. Vertical: $50 \mathrm{mV} /$ div. Horizontal: $200 \mu \mathrm{~s} / \mathrm{div}$.

Figure 7 shows how the output of the bias generator can be controlled in steps of approximately 45 mV from 25 V to 71 V by using the MAX5304 10-bit DAC and a 2.5 V reference.

Figure 7. Low-noise APD bias power supply. Output voltage is digitally programmable from 24 V to 71 V in steps of 45 mV .

MAX3271: QuickView MAX3664: QuickView MAX5026: QuickView
MAX5304: QuickView
MAX6102: QuickView
-- Full (PDF) Data Sheet (560k)
-- Free Sample
-- Free Sample
-- Free Sample
-- Free Sample

